miércoles, 3 de diciembre de 2008

METODOS ANTICONCEPTIVOS

^^Método anticonceptivo^^

Un método anticonceptivo es una metodología que impide o reduce la posibilidad de que ocurra la fecundación o el embarazo al mantener relaciones sexuales. Por lo general implica acciones, dispositivos o medicamentos en las que cada uno tiene su nivel de efectividad. También se le llama contracepción o anticoncepción, en el sentido de ser formas de control de la natalidad.
La historia del control de la natalidad se remonta al descubrimiento que la relación sexual está asociada al embarazo. Las formas más antiguas incluían el
coitus interruptus y la combinación de hierbas con supuestas propiedades contraceptivas o abortivas. El registro más antiguo del control de la natalidad presenta instrucciones anticonceptivas en el Antiguo Egipto.

Tipos de métodos anticonceptivos

_Métodos de barrera _
Preservativo. Tiene una versión femenina y una masculina.
Diafragma. Una variedad más pequeña de éste es el capuchón cervical.
LeaContraceptivum. Un tamaño, él permanece en lugar debido a la succión.
Los métodos de barrera impiden la entrada de esperma al útero.
Los condones masculinos son recubrimientos delgados de caucho, vinilo o productos naturales que se colocan sobre el pene erecto. Los condones masculinos pueden ser tratados con espermicida para ofrecer mayor protección. Los condones masculinos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro (sólo los condones de látex y vinilo.)
Los condones femeninos son un recubrimiento delgado de plástico poliuretano con aros de poliuretano en extremos opuestos. Estos se introducen en la vagina antes del coito. Al igual que los condones masculinos, los condones femeninos impiden que los espermatozoides tengan acceso al aparato reproductivo femenino e impiden que los microorganismos (ETS, incluyendo el VIH o SIDA) pasen de un miembro de la pareja a otro

_Métodos químicos y hormonales _
Espermicidas. Los espermicidas son productos químicos (por lo general, nonoxinol-9) que desactivan o matan a los espermatozoides. Están disponibles en aerosoles (espumas), cremas, tabletas vaginales, supositorios o películas vaginales disolubles. Los espermicidas causan la ruptura de las membranas de los espermatozoides, lo cual disminuye su movimiento (motilidad y movilidad), así como su capacidad de fecundar el óvulo.
La
anticoncepción hormonal se puede aplicar de diversas formas.
Vía oral, por la
píldora anticonceptiva
Anticonceptivo subdérmico Implante compuesto por una varilla del tamaño de un cerillo que se coloca por debajo de la piel del brazo de la mujer, ofreciendo protección anticonceptiva por tres años sin ser definitivo, el médico que ha recibido capacitación puede retirarlo en cualquier momento retornando la mujer en un tiempo mínimo a la fertilidad.
Anillo vaginal Único de administración vaginal mensual. Es el método más innovador en anticoncepción femenina: un anillo transparente, suave y flexible que se coloca por la misma usuaria por vía vaginal liberando diariamente las dosis más bajas de hormonas.
Píldora trifásica Método anticonceptivo altamente eficaz de dosis hormonales bajas con un balance hormonal suave y escalonado que imita al ciclo fisiológico de la mujer en forma secuencial progresiva etapa reproductiva brindando estricto control del ciclo, además reduce la grasa facial. También puede ser indicado para el tratamiento de acné leve a moderado.
Píldora 0 estrógenos. Píldora anticonceptiva libre de estrógenos, recomendada para mujeres que no pueden o no desean tomarlos; la dosis hormonal es tan ligera que entre otras indicaciones es la única píldora recetada durante la lactancia.
Píldora del día después Método hormonal de uso ocasional. La anticoncepción de emergencia, se trata de la administración de un producto hormonal no abortivo que evita la ovulación y de esta forma previene el embarazo en aquellas mujeres que tuvieron relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección, incluyendo los casos de violación.
Aunque este tratamiento se conoce también como "la píldora del día siguiente", el término puede ser engañoso pues debe utilizarse inmediatamente después de tener relaciones sexuales y el método anticonceptivo ha fallado o se tuvieron relaciones sin protección; puede tomarse en un periodo de hasta 72 horas, sin embargo la sugerencia es que la mujer tome 2 píldoras en una sola toma inmediatamente.
También hay anticoncepción hormonal que suprime durante la
regla.
Actualmente la anticoncepción hormonal masculina está en desarrollo.
Parches anticonceptivos.
Mediante
anillos vaginales.

_Método combinado_

Considerado por muchos como el método anticonceptivo por excelencia, debido a su alta efectividad (similar a la píldora) y a que no posee muchos de los cuestionamientos religiosos de la píldora. Consiste en combinar el uso de preservativo masculino con una crema espermaticida (eg. Delfen). La crema se coloca con un aplicador especial que viene con el envase y el hombre utiliza el preservativo de la manera habitual. Tiene la ventaja agregada de lubricar el canal vaginal y así facilitar la penetración.

_Dispositivo intrauterino (DIU) _

Es un método que, mediante la colocación en el interior del útero de un dispositivo plástico con elementos metálicos (ej. cobre), se produce una alteración del microclima intrauterino que dificulta de gran manera la fecundación y también la implantación del óvulo fecundado. Este, sin embargo, no ha demostrado ser 100% eficiente, ya que se han dado casos especiales en donde la mujer, pese a tener el método anticonceptivo ya mencionado, se embaraza y da a luz un niño con el aparato incrustado en alguna parte del cuerpo.

_Métodos naturales_

Artículo principal: Métodos anticonceptivos naturales
Los métodos naturales de conocimiento de la fertilidad, se basan en la observación de síntomas asociados a los procesos fisiológicos que dan lugar a la ovulación y a la adaptación del acto sexual a las fases fértiles o infértiles del ciclo menstrual en función de que se desee o no una concepción, sin el uso de fármacos, procedimientos mecánicos ni quirúrgicos. Algunos métodos predictivos son aún enseñados con cierta preferencia en las escuelas ginecológicas, como el método de Ogino-Knauss o método del ciclo, mientras que otras técnicas, tan ancestrales como el Coitus interruptus tienen hoy en día una fiabilidad que es similar a la de otros métodos no quirúrgicos.

Otros métodos naturales están basados en la conciencia de la fertilidad, es decir, la mujer observa con atención y registra los signos de fertilidad en su cuerpo para determinar las fases fértiles o infértiles. Los síntomas específicos caen en tres categorías cambios en temperatura basal, en el moco cervical y la posición cervical. El registrar tanto la temperatura basal como otro signo primario, se conoce como el método sintotermal. Otras metodologías incluyen el monitoreo de los niveles en orina de estrógeno y LH a lo largo del ciclo menstrual.
La Organización Mundial de la Salud clasifica los métodos modernos de planificación familiar natural como buenos o muy buenos, con valores de
índice de Pearl menores de 1. La Sociedad Española de Ginecología y Obstetricia ha publicado un documento consenso sobre los métodos naturales de PFN.
Estos métodos de planificación familiar son apoyados y promovidos por la
Iglesia Católica para la vivencia y el ejercicio de lo que esa institución denomina una paternidad responsable, como queda reflejado en la Encíclica Humanae Vitae. Son métodos que, para que puedan ser utilizados como métodos seguros de control de la fertilidad, requieren cierto grado de disciplina en la autoobservación/anotación y un correcto aprendizaje con materiales y personal bien preparado. Una crítica a estos métodos es la de que no previenen el SIDA o cualquier otra enfermedad de transmisión sexual, ya que al igual que la píldora anticonceptiva, el anillo vaginal y otros métodos no naturales, que implican contacto físico directo, no se protegen de dichas enfermedades.
De los métodos naturales no son recomendables el método Ogino/Knauss ni el coitus interruptus por falta de eficacia.
En cuanto a los métodos modernos, el más eficaz es el sintotérmico con doble control, significativamente superior en eficacia sobre el Método de la Ovulación.

_Métodos simples_

Temperatura basal: El método de la temperatura basal se sirve del aumento que la progesterona induce en la temperatura corporal interna de la mujer durante la ovulación y determina, una vez diagnosticada, infertilidad postovulatoria. Para ello la mujer deberá determinar la temperatura corporal interna a lo largo del ciclo menstrual. El método de la temperatura basal estricto circunscribe el periodo de infertilidad a los días posteriores a la subida de temperatura exclusivamente. El método de la temperatura basal extendido define, cumplidas ciertas condiciones, 6 días de infertilidad preovulatoria. El método de la temperatura basal es altamente fiable en el periodo postovulatorio, y supone la base de la mayoría de los métodos naturales modernos. Sin embargo tiene limitaciones a la hora de determinar la infertilidad preovulatoria.
Método de la ovulación (método Billings y otros): El método de la ovulación se basa en la observación diaria de los cambios del moco cervical a lo largo del ciclo femenino, cambios que se asocian a los aumentos en los niveles de estrógenos previos al momento de la ovulación. Normalmente, las fases de infertilidad de la mujer se caracterizan por una ausencia de moco cervical visible y una sensación de sequedad vaginal. Conforme se acerca el momento de la ovulación el moco cervical se hace a lo largo de varios días y de forma progresiva, cada vez más líquido, elástico y transparente. Próximo al momento de la ovulación se produce el llamado pico de moco caracterizado por un cambio abrupto de las propiedades el moco y su posible desaparición. El moco cervical es un signo de fertilidad y por ello su observación puede ser utilizado para el control de la fertilidad. La confiabilidad es superior al 95% en varios países estudiados. Aunque, aplicado correctamente, puede ser considerado un método seguro, es inferior al método de la temperatura en fase postovulatoria. Su utilización es especialmente apto para la consecución del embarazo en casos de hipofertilidad ya que permite concentrar las relaciones sexuales en torno al momento de mayores probabilidades de embarazo. Como método anticonceptivo es especialmente inseguro en mujeres con ciclos monofásicos (durante la menarquia o antes de la menopausia).

_Métodos compuestos _

Método sintotérmico: Combina el método de la temperatura basal, para el diagnóstico de la infertilidad postovulatoria, en combinación con otra serie de síntomas (moco cervical, cuello del útero, entre otros) y cálculos de longitud de ciclos para la determinación de la infertilidad preovulatoria. Permite beneficiarse de la práctica infalibilidad de la temperatura basal a la hora de determinar la infertilidad postovulatoria y aumentar considerablemente la eficacia en periodo preovulatorio. Su eficacia es equivalente a las modernas preparaciones de anovulatorios orales y solamente inferior a la esterilización quirúrgica. Una ventaja adicional es que es un método válido e igualmente eficaz en todas las circunstancias de la vida reproductiva de la mujer (período post-parto, período post-píldora, premenopausia, etc).

_Métodos anticonceptivos definitivos o irreversibles _

Son parcialmente irreversibles:
Ligadura de trompas, o salpingoclasia. Consiste en ligar las trompas de Falopio con grapas a fin de impedir que el óvulo se implante en el útero o que los espermatozoides se encuentren con él.
Vasectomía. Es una operación quirúrgica para seccionar los conductos deferentes que transportan a los espermatozoides de los testículos al exterior cuando se eyacula. Una vez realizada, los espermatozoides que a diario se producen son reabsorbidos por el organismo. Puesto que el líquido seminal es elaborado en la próstata, la vasectomía no impide la eyaculación. Es un proceso reversible aunque con dificultades.

_Métodos de emergencia _

Píldora del día después. Tiene bastantes efectos secundarios.
El
método de Yuzpe tiene una tasa de fallos de hasta el 2% si la mujer lo ha usado en forma correcta, lo cual representa una disminución considerable del riesgo de embarazo, comparado con el no uso de anticoncepción de emergencia. Dependiendo cuando la mujer utilice las píldoras como anticoncepción de emergencia durante el ciclo menstrual, la combinación puede prevenir la ovulación, fertilización o la implantación, se cree que básicamente modifica el revestimiento endometrial impidiendo la implantación. El método de Yuzpe no es abortivo y no es eficaz cuando el proceso de implantación se ha iniciado.
El
aborto no es un método anticonceptivo, porque la concepción ya se ha producido. Además tiene el riesgo de cualquier operación.
De todos estos métodos sólo los preservativos y el femy disminuyen la posibilidad de contraer una
enfermedad venérea. En algún caso el diafragma puede evitar algún tipo de infección, pero no es eficaz como método general de prevención.
Los métodos abortivos como la píldora de
mifepristona (RU-486) producen una reducción relativa del número de abortos en las estadísticas, pues trasladan los "macro-abortos" a "micro-abortos", es decir, a abortos del embrión por implantarse o recién implantado. El concepto de control de natalidad es más amplio pues incluye al aborto e incluso al infanticidio y no debe confundirse ni con el método anticonceptivo ni con el aborto.

SEXUALIDAD

genetica y herencia


GENETICA

La genética es el estudio de los factores hereditarios o genes. De su transmisión resulta que los hijos se parecen a sus padres más que a otros seres vivientes.
Ese parecido se refiere no sólo a los rasgos de la organización general propios de la clase y especie a la que pertenezca el grupo de progenitores y descendientes, sino a características peculiares de tipo racial o de una variedad determinada; en la especie humana, por ejemplo, se heredan el color del pelo, de los ojos, los grupos sanguíneos, etc.
Desde siempre el hombre se interesó por descubrir el mecanismo hereditario, pero su complejidad es tal que solamente a fines del siglo pasado se pudo conocer el modo de transmisión de los genes, gracias a los estudios del agustino Gregorio Mendel que, en 1856 comenzó una investigación en el huerto de su convento que le llevo al conocimiento de las leyes de la herencia biológica. Realizó sus experimentos en razas de guisantes común, raza que seleccionó y cultivó reiteradamente.
Se ha podido comprobar estudiando escritos de autores anteriores que los hombres tuvieron ya desde la antigüedad algunas ideas sobre la herencia biológica.
Los resultados obtenidos fueron publicados por la Sociedad de Historia Natural de Brunn en 1866, pero tuvieron poca difusión y el mundo científico las pasó por alto. En 1900, fueron redescubiertas las leyes de la herencia, de un modo independiente y simultáneo, por tres investigadores: Hugo de Vries, Karl Correns y Erich Tschermak, que hallaron al rebuscar en la bibliografía la obra de Mendel y tuvieron que ceder a este la prioridad del descubrimiento.
Entre las cuestiones que estudia la genética destacan:
El conocimiento de la naturaleza de los genes.
El conocimiento de las estructuras portadoras de esos genes.
Los mecanismos de transmisión de estos.
La influencia de los genes en el desarrollo y evolución de los organismos.
El material hereditario esta formado por núcleo-proteínas y esta contenido en los cromosomas. Hay casos en que, en lugar de núcleo-proteínas, existen ácidos nucleicos solamente. Pero unidos o no a proteínas, los ácidos nucleicos son los portadores de la herencia biológica en todos los seres vivos. Este es uno de los hallazgos fundamentales de la biología actual.
Los ácidos nucleicos se han conocidos perfectamente gracias a virus y bacterias, dada la unidad biológica estructural y funcional de todos los seres vivos. El ADN y ARN intervienen en las biosíntesis de ellos mismos y de todos los demás componentes celulares, según un código genético que se transmite de padre a hijos.
Mendel utilizó, lo mismo que sus seguidores inmediatos, organismos diplontes procedentes de un cigoto que, al tener dos series de cromosomas, tiene dos series de genes. Pero mucho más sencillo es el estudio en los seres procariontes pues, al ser haploide, falta en ellos la meiosis y tienen una serie única de genes. Sin embargo, por haberse conocido primeramente la herencia mendeliana, se estudiará ésta en primer lugar.


_________________________________________________________________


ESTRUCTURA DE LA CÉLULA

La célula es la unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos. La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.
Características generales de las células
La célula está envuelta en una membrana —llamada membrana plasmática— que encierra una sustancia rica en agua llamada citoplasma, en la que, a menudo, es posible diferenciar la presencia de orgánulos celulares –entre ellos el núcleo celular- y, son frecuentes, otros envoltorios exteriores. En el interior de las células tienen lugar numerosas reacciones químicas que les permiten crecer, producir energía y eliminar residuos. El conjunto de estas reacciones se llama metabolismo (término que proviene de una palabra griega que significa cambio). En los animales y en las plantas superiores presentan especializaciones y se diferencian en tejidos, con tipos celulares de forma y función diferente: tejidos epidérmicos y epiteliales, muscular, nervioso,...
Hay células de formas y tamaños muy variados. Algunas de las células bacterianas más pequeñas tienen forma cilíndrica de menos de una micra o µm (1 µm es igual a una millonésima de metro) de longitud. En el extremo opuesto se encuentran las células nerviosas, corpúsculos de forma compleja con numerosas prolongaciones delgadas que pueden alcanzar varios metros de longitud (las del cuello de la jirafa constituyen un ejemplo espectacular). Casi todas las células vegetales tienen entre 20 y 30 µm de longitud, forma poligonal y pared celular rígida. Las células de los tejidos animales suelen ser compactas, entre 10 y 20 µm de diámetro y con una membrana superficial deformable y casi siempre muy plegada.
Pese a las muchas diferencias de aspecto y función. Todas las células contienen información hereditaria codificada en moléculas de
ácido desoxirribonucleico (ADN); esta información dirige la actividad de la célula y asegura la reproducción y el paso de los caracteres a la descendencia. Estas y otras numerosas similitudes (entre ellas muchas moléculas idénticas o casi idénticas) demuestran que hay una relación evolutiva entre las células actuales y las primeras que aparecieron sobre la Tierra.
Composición química
En los organismos vivos no hay nada que contradiga las leyes de la química y la física. La química de los seres vivos, objeto de estudio de la bioquímica, está dominada por compuestos de carbono y se caracteriza por reacciones acaecidas en solución acuosa y en un intervalo de temperaturas pequeño. La química de los organismos vivientes es muy compleja, más que la de cualquier otro sistema químico conocido. Está dominada y coordinada por
polímeros de gran tamaño, moléculas formadas por encadenamiento de subunidades químicas; las propiedades únicas de estos compuestos permiten a células y organismos crecer y reproducirse. Los tipos principales de macromoléculas son las proteínas, formadas por cadenas lineales de aminoácidos; los ácidos nucleicos, ADN y ARN, formados por bases nucleotídicas, y los polisacáridos, formados por subunidades de azúcares.
Células procarióticas y eucarióticas
Entre las células procarióticas y eucarióticas hay diferencias fundamentales en cuanto a tamaño y organización interna. Las procarióticas, que comprenden bacterias y cianobacterias (antes llamadas algas verdeazuladas), son células pequeñas, entre 1 y 5 µm de diámetro, y de estructura sencilla; el material genético (ADN) está concentrado en una región, pero no hay ninguna membrana que separe esta región del resto de la célula. Las células eucarióticas, que forman todos los demás organismos vivos, incluidos protozoos, plantas, hongos y animales, son mucho mayores (entre 10 y 50 µm de longitud) y tienen el material genético envuelto por una membrana que forma un órgano esférico conspicuo llamado núcleo. De hecho, el término eucariótico deriva del griego ‘núcleo verdadero’, mientras que procariótico significa ‘antes del núcleo’.
Elementos celulares
Las tres partes fundamentales de la célula eucariota son la membrana, el citoplasma y el núcleo celular.
Superficie celular
El contenido de todas las células vivas está rodeado por una membrana delgada llamada membrana plasmática, o celular, que marca el límite entre el contenido celular y el medio externo. La membrana plasmática es una película continua formada por moléculas de
lípidos y proteínas, entre 8 y 10 nanómetros (nm) de espesor y actúa como barrera selectiva reguladora de la composición química de la célula. La mayor parte de los iones y moléculas solubles en agua son incapaces de cruzar de forma espontánea esta barrera, y precisan de la concurrencia de proteínas portadoras especiales o de canales proteicos. De este modo la célula mantiene concentraciones de iones y moléculas pequeñas distintas de las imperantes en el medio externo. Otro mecanismo, que consiste en la formación de pequeñas vesículas de membrana que se incorporan a la membrana plasmática o se separan de ella, permite a las células animales transferir macromoléculas y partículas aún mayores a través de la membrana.
Casi todas las células bacterianas y vegetales están además encapsuladas en una pared celular gruesa y sólida compuesta de
polisacáridos (el mayoritario en las plantas superiores es la celulosa). La pared celular, que es externa a la membrana plasmática, mantiene la forma de la célula y la protege de daños mecánicos, pero también limita el movimiento celular y la entrada y salida de materiales.
Citoplasma y citosol

El citoplasma comprende todo el volumen de la célula, salvo el núcleo. Engloba numerosas estructuras especializadas y orgánulos, como se describirá más adelante.
La solución acuosa concentrada en la que están suspendidos los orgánulos se llama citosol. Es un gel de base acuosa que contiene gran cantidad de moléculas grandes y pequeñas, y en la mayor parte de las células es, con diferencia, el compartimiento más voluminoso (en las bacterias es el único compartimiento intracelular). En el citosol se producen muchas de las funciones más importantes de mantenimiento celular, como las primeras etapas de descomposición de moléculas nutritivas y la síntesis de muchas de las grandes moléculas que constituyen la célula. Aunque muchas moléculas del citosol se encuentran en estado de solución verdadera y se desplazan con rapidez de un lugar a otro por difusión libre, otras están ordenadas de forma rigurosa. Estas estructuras ordenadas confieren al citosol una organización interna que actúa como marco para la fabricación y descomposición de grandes moléculas y canaliza muchas de las reacciones químicas celulares a lo largo de vías restringidas.
El núcleo

El órgano más conspicuo en casi todas las células animales y vegetales es el núcleo; está rodeado de forma característica por una membrana, es esférico y mide unas 5 µm de diámetro. Dentro del núcleo, las moléculas de ADN y proteínas están organizadas en cromosomas que suelen aparecer dispuestos en pares idénticos. Los cromosomas están muy retorcidos y enmarañados y es difícil identificarlos por separado. Pero justo antes de que la célula se divida, se condensan y adquieren grosor suficiente para ser detectables como estructuras independientes. El ADN del interior de cada cromosoma es una molécula única muy larga y arrollada que contiene secuencias lineales de genes. Éstos encierran a su vez instrucciones codificadas para la construcción de las moléculas de proteínas y ARN necesarias para producir una copia funcional de la célula.
El núcleo está rodeado por una membrana doble, y la interacción con el resto de la célula (es decir, con el citoplasma) tiene lugar a través de unos orificios llamados poros nucleares. El nucleolo es una región especial en la que se sintetizan partículas que contienen ARN y proteína que migran al citoplasma a través de los poros nucleares y a continuación se modifican para transformarse en ribosomas.
El núcleo controla la síntesis de proteínas en el citoplasma enviando mensajeros moleculares. El ARN mensajero (ARNm) se sintetiza de acuerdo con las instrucciones contenidas en el ADN y abandona el núcleo a través de los poros. Una vez en el citoplasma, el ARNm se acopla a los ribosomas y codifica la estructura primaria de una proteína específica.

Orgánulos del citoplasma
Mitocondrias y cloroplastos

Las mitocondrias son uno de los orgánulos más conspicuos del citoplasma y se encuentran en casi todas las células eucarióticas. Observadas al microscopio, presentan una estructura característica: la mitocondria tiene forma alargada u oval de varias micras de longitud y está envuelta por dos membranas distintas, una externa y otra interna, muy replegada. Las mitocondrias son los orgánulos productores de energía. La célula necesita energía para crecer y multiplicarse, y las mitocondrias aportan casi toda esta energía realizando las últimas etapas de la descomposición de las moléculas de los alimentos. Estas etapas finales consisten en el consumo de oxígeno y la producción de dióxido de carbono, proceso llamado respiración, por su similitud con la respiración pulmonar. Sin mitocondrias, los animales y hongos no serían capaces de utilizar oxígeno para extraer toda la energía de los alimentos y mantener con ella el crecimiento y la capacidad de reproducirse. Los organismos llamados anaerobios viven en medios sin oxígeno, y todos ellos carecen de mitocondrias.
Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.
Orgánulos con membranas internas
El citoplasma contiene muchos orgánulos envueltos por una membrana única que desempeñan funciones diversas. Casi todas guardan relación con la introducción de materias primas y la expulsión de sustancias elaboradas y productos de desecho por parte de la célula. Por ello, en las células especializadas en la secreción de proteínas, por ejemplo, determinados orgánulos están muy atrofiados; en cambio, los orgánulos son muy numerosos en las células de los vertebrados superiores especializadas en capturar y digerir los virus y bacterias que invaden el organismo.
La mayor parte de los componentes de la membrana celular se forman en una red tridimensional irregular de espacios rodeada a su vez por una membrana y llamada retículo endoplasmático (RE), en el cual se forman también los materiales que son expulsados por la célula. El aparato de Golgi está formado por pilas de sacos aplanados envueltos en membrana; este aparato recibe las moléculas formadas en el retículo endoplasmático, las transforma y las dirige hacia distintos lugares de la célula. Los lisosomas son pequeños orgánulos de forma irregular que contienen reservas de
enzimas necesarias para la digestión celular de numerosas moléculas indeseables. Los peroxisomas son vesículas pequeñas envueltas en membrana que proporcionan un sustrato delimitado para reacciones en las cuales se genera y degrada peróxido de hidrógeno, un compuesto reactivo que puede ser peligroso para la célula. Las membranas forman muchas otras vesículas pequeñas encargadas de transportar materiales entre orgánulos. En una célula animal típica, los orgánulos limitados por membrana pueden ocupar hasta la mitad del volumen celular total.
_______________________________________________________________


Genes y Cromosomas:
Los Componentes Básicos de la Vida
Cromosomas La clave de la vida y de la herencia está en el núcleo de la célula, que es el centro que gobierna todas sus actividades.
El núcleo de cada célula sexual humana, contiene 23 cromosomas, que son unos orgánulos filiformes en forma de hilos y cada uno de ellos, tiene una larga molécula enroscada de una sustancia química llamada
ADN o Acido desoxirribonucléico, que es la molécula informativa de la vida.
El ADN contiene más o menos 30,000 genes, cada uno de los cuales contiene información precisa sobre las características de la especie humana y las que va a tener la persona de forma particular.
En el momento de la fecundación, cuando los núcleos de las células sexuales se fusionan, se unen los cromosomas en pares y la célula empieza a dividirse en millones de nuevas células que si bien son iguales porque contienen las mismas partes, son diferentes en el contenido genético que contienen y que definen desde tejidos diferentes como es el sanguíneo del óseo o muscular, hasta las características de una persona.
El mundo de los genes es fascinante y gracias a los estudios del genoma humano se ha identificado el papel de cada uno de ellos en la conformación de la persona y hasta se han identificado los que determinarán ciertos problemas de salud en la vida adulta.
Los genes trabajan toda la vida, porque nuestro cuerpo no deja de producir nuevas células para suplir las que mueren, se desgastan o lastiman, por lo que gracias a ellos todos los tejidos de nuestro cuerpo, excepto el nervioso se renueva constantemente.
Pero todo lo relacionado con la genética no podría comprenderse, si no se hubieran descubierto las células madre.
Las células madre, son las que dan origen a todas las demás que formarán los tejidos y órganos del cuerpo, son las que determinan sus funciones y permiten no sólo el desarrollo del cuerpo, sino la regeneración de los tejidos a lo largo de la vida. Sin ellas estaríamos llenos de cicatrices y la mayoría de las enfermedades que sufrimos continuamente no podrían curarse, de hecho, sin la existencia de las células madres no podríamos vivir.
Y es que ellas son capaces de diferenciarse para originar un cierto tipo de célula que constituyen los tejidos fundamentales de los seres humanos, los musculares, óseos, cardíacos, hepáticos, sanguíneos, nerviosos, de la piel y todos los demás y aunque todavía sus mecanismos son un gran misterio que están tratando de resolver los especialistas, esto constituye en este momento una línea de investigación muy fuerte, ya que se piensa que muchos procesos degenerativos se pueden revertir con su manipulación y muchas enfermedades se podrán prevenir.


Genes Cada ser humano tiene aproximadamente 30.000
genes que determinan el crecimiento, el desarrollo y el funcionamiento de nuestros sistemas físicos y bioquímicos. Normalmente, los genes se encuentran distribuidos en 46 cromosomas (23 pares) dentro de nuestras células. Los pares del 1 al 22 son iguales en hombres y mujeres y se conocen como autosomas. El par número 23 está compuesto por los cromosomas que determinan el sexo. Las mujeres tienen dos cromosomas X y los hombres un cromosoma X y un cromosoma Y. Los espermatozoides y las células ováricas son diferentes de las demás células del organismo. Estas células reproductivas tienen sólo 23 cromosomas independientes cada una. Cuando un espermatozoide y un óvulo se combinan, al comienzo del embarazo, forman una célula nueva con 46 cromosomas. El ser humano resultante es genéticamente único y su diseño está determinado por el padre y la madre en partes iguales.
______________________________________________________________

Leyes de Mendel

Conviene aclarar que Mendel, por ser pionero, carecía de los conocimientos actuales sobre la presencia de pares de alelos en los seres vivos y sobre el mecanismo de transmisión de los cromosomas, por lo que esta exposición está basada en la interpretación posterior de los trabajos de Mendel.
A continuación se explican brevemente las leyes de Mendel:
Primera ley de Mendel: A esta ley se le llama también Ley de la uniformidad de los híbridos de la primera generación (F1), y dice que cuando se cruzan dos variedades individuos de raza pura, ambos homocigotos, para un determinado carácter, todos los híbridos de la primera generación son iguales.
Los individuos de esta primera generación filial (F1) son
heterocigóticos o híbridos, pues sus genes alelos llevan información de las dos razas puras u homocigóticas: la dominante, que se manifiesta, y la recesiva, que no lo hace..
Mendel llegó a esta conclusión trabajando con una variedad pura de plantas de guisantes que producían las semillas amarillas y con una variedad que producía las semillas verdes. Al hacer un cruzamiento entre estas plantas, obtenía siempre plantas con semillas amarillas.


Otros casos para la primera ley. La primera ley de Mendel se cumple también para el caso en que un determinado gen dé lugar a una
herencia intermedia y no dominante, como es el caso del color de las flores del "dondiego de noche". Al cruzar las plantas de la variedad de flor blanca con plantas de la variedad de flor roja, se obtienen plantas de flores rosas, como se puede observar a continuación:


Segunda ley de Mendel: A la segunda ley de Mendel también se le llama de la separación o disyunción de los alelos.
Experimento de Mendel. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción que se indica en la figura. Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber desaparecido en la primera generación filial, vuelve a manifestarse en esta segunda generación.


Los dos
alelos distintos para el color de la semilla presentes en los individuos de la primera generación filial, no se han mezclado ni han desaparecido , simplemente ocurría que se manifestaba sólo uno de los dos. Cuando el individuo de fenotipo amarillo y genotipo Aa, forme los gametos, se separan los alelos, de tal forma que en cada gameto sólo habrá uno de los alelos y así puede explicarse los resultados obtenidos.
Otros casos para la segunda ley. En el caso de los genes que presentan
herencia intermedia, también se cumple el enunciado de la segunda ley. Si tomamos dos plantas de flores rosas de la primera generación filial (F1) y las cruzamos entre sí, se obtienen plantas con flores blancas, rosas y rojas. También en este caso se manifiestan los alelos para el color rojo y blanco, que permanecieron ocultos en la primera generación filial.

Retrocruzamiento
Retrocruzamiento de prueba.

En el caso de los genes que manifiestan herencia dominante, no existe ninguna diferencia aparente entre los individuos heterocigóticos (Aa) y los homocigóticos (AA), pues ambos individuos presentarían un fenotipo amarillo. La prueba del retrocruzamiento, o simplemente cruzamiento prueba, sirve para diferenciar el individuo homo- del heterocigótico. Consiste en cruzar el fenotipo dominante con la variedad homocigótica recesiva (aa).
- Si es homocigótico, toda la descendencia será igual, en este caso se cumple la primera Ley de Mendel.
- Si es heterocigótico, en la descendencia volverá a aparecer el carácter recesivo en una proporción del 50%.

Tercera ley de Mendel. Se conoce esta ley como la de la herencia independiente de caracteres, y hace referencia al caso de que se contemplen dos caracteres distintos. Cada uno de ellos se transmite siguiendo las leyes anteriores con independencia de la presencia del otro carácter.
Experimento de Mendel. Mendel cruzó plantas de guisantes de semilla amarilla y lisa con plantas de semilla verde y rugosa ( Homocigóticas ambas para los dos caracteres).Las semillas obtenidas en este cruzamiento eran todas amarillas y lisas, cumpliéndose así la primera ley para cada uno de los caracteres considerados , y revelándonos también que los alelos dominantes para esos caracteres son los que determinan el color amarillo y la forma lisa.Las plantas obtenidas y que constituyen la F1 son dihíbridas (AaBb).
Estas plantas de la F1 se cruzan entre sí, teniendo en cuenta los gametos que formarán cada una de las plantas. Se puede apreciar que los alelos de los distintos genes se transmiten con independencia unos de otros, ya que en la segunda generación filial F2 aparecen guisantes amarillos y rugosos y otros que son verdes y lisos, combinaciones que no se habían dado ni en la generación parental (P), ni en la filial primera (F1).Asímismo, los resultados obtenidos para cada uno de los caracteres considerados por separado, responden a la segunda ley.

_____________________________________________________________


HERENCIA. TRANSMISIÓN DE LOS CARACTERES.

Todas las personas presentamos unas características comunes que nos definen como seres humanos. Sin embargo, no hay dos seres humanos exactamente iguales. Las diferencias que se observan entre las distintas personas, por ejemplo en los rasgos de la cara u otros caracteres como el grupo sanguíneo, el color de la piel o el tipo de cabello, son consecuencia directa de la herencia. Otros caracteres, a pesar de ser hereditarios, pueden estar influidos por el ambiente. Así, la altura de un individuo está determinada por la herencia, pero puede variar dependiendo de la alimentación recibida durante su infancia.
Algunos caracteres que exhibimos, como las cicatrices, los adquirimos a lo largo de nuestra vida. No obstante, gran parte de los caracteres que observamos en los individuos son hereditarios, es decir, se transmiten de generación en generación mediante la reproducción. Estos caracteres van apareciendo durante el desarrollo y el crecimiento de un individuo y se manifiestan a lo largo de su vida.
Los caracteres que son el resultado exclusivamente de la acción del ambiente no se transmiten a los hijos y se denominan caracteres adquiridos.
A veces, es difícil determinar si la variación de un carácter es hereditaria o tiene un origen ambiental. Por ejemplo, la estatura de las personas es un carácter hereditario; los hijos de padres altos suelen ser también altos; sin embargo, una correcta alimentación también influye en la estatura alcanzada.
Muchos de los caracteres heredados se manifiestan de una manera diferente según las condiciones ambientales en las que vive o se ha desarrollado un individuo. Sin embargo, las variaciones en los caracteres provocadas por el ambiente se caracterizan por no ser heredables, es decir, por no transmitirse a la descendencia.
Para que la variación de un carácter sea heredable ha de afectar al material hereditario, es decir, a la información que los padres transmiten a los hijos.



Algunas anomalías genéticas tienen una herencia de carácter recesivo. En estos casos son necesarias dos copias del gen recesivo para que la enfermedad se manifieste. Una persona que tiene sólo una copia del gen recesivo es portadora de ese gen pero no manifiesta la enfermedad. En la ilustración, el gen dominante se representa en color verde y el recesivo en azul. En la pareja de la izquierda el padre tiene una copia del gen dominante y otra del gen recesivo. La madre tiene dos copias del gen dominante. Cada padre sólo puede transmitir un gen a los hijos. Los cuatro hijos de esta pareja representan las probabilidades de las distintas combinaciones que pueden surgir. Los hijos de la parte izquierda reciben el gen recesivo de su padre y el dominante de la madre y son, por tanto, portadores. Por tanto hay un 50% de posibilidades de que los niños que nazcan de esta pareja sean portadores. Como ninguno de los hijos puede recibir dos copias del gen recesivo ninguno desarrollará la enfermedad. Cuando los dos padres son portadores, como se muestra en la pareja de la derecha, hay un 25 % de posibilidades de que los niños nazcan con la enfermedad, un 50 % de posibilidades de que los niños sean portadores y un 25 % de posibilidades de que los niños no sean ni portadores ni desarrollen la enfermedad.
Los cromosomas contienen la información genética del organismo. Cada tipo de organismo tiene un número de cromosomas determinado; en la especie humana, por ejemplo, hay 23 pares de cromosomas organizados en 8 grupos según el tamaño y la forma. La mitad de los cromosomas proceden del padre y la otra mitad de la madre. Las diferencias entre individuos reflejan la recombinación genética de estos juegos de cromosomas al pasar de una generación a otra.

BASES FÍSICAS DE LA HERENCIA
CARIOGRAMA


Los cromosomas contienen la información genética del organismo. Cada tipo de organismo tiene un número de cromosomas determinado; en la especie humana, por ejemplo, hay 23 pares de cromosomas organizados en 8 grupos según el tamaño y la forma. La mitad de los cromosomas proceden del padre y la otra mitad de la madre. Las diferencias entre individuos reflejan la recombinación genética de estos juegos de cromosomas al pasar de una generación a otra.

Poco después del redescubrimiento de los trabajos de Mendel, los científicos se dieron cuenta de que los patrones hereditarios que él había descrito eran comparables a la acción de los cromosomas en las células en división, y sugirieron que las unidades mendelianas de la herencia, los genes, se localizaban en los cromosomas. Ello condujo a un estudio profundo de la división celular.

Cada célula procede de la división de otra célula. Todas las células que componen un ser humano derivan de las divisiones sucesivas de una única célula, el cigoto, que se forma a partir de la unión de un óvulo y un espermatozoide. La composición del material genético es idéntica en la mayoría de las células y con respecto al propio cigoto (suponiendo que no se ha producido ninguna mutación). Cada célula de un organismo superior está formada por un material de aspecto gelatinoso, el citoplasma, que contiene numerosas estructuras pequeñas. Este material citoplasmático envuelve un cuerpo prominente denominado núcleo. Cada núcleo contiene cierto número de diminutos cromosomas filamentosos. Ciertos organismos simples, como las algas verde-azuladas y las bacterias, carecen de un núcleo delimitado aunque poseen un citoplasma que contiene uno o más cromosomas.

Morgan contribuyó a los estudios genéticos cuando en 1910 observó diferencias sexuales en la herencia de caracteres, un patrón que se conoce como herencia ligada al sexo.



Determinación del sexo, tipo XX-XY
En los seres humanos el sexo del recién nacido depende del tipo de espermatozoide que realice la fecundación. Si el espermatozoide que fecunda el óvulo es portador del cromosoma X el cigoto resultante dará lugar a una niña (XX) y si el espermatozoide que fecunda al óvulo es portador del cromosoma Y el cigoto dará lugar a un niño (XY). La probabilidad de que nazca un niño o una niña es exactamente la misma.
El espermatozoide y el óvulo humano son las células responsables de la transmisión de los caracteres hereditarios. Poseen una compleja estructura que les permite llevar a cabo el transporte del material genético y la formación del cigoto que dará origen al nuevo individuo con las características de los progenitores.

HERENCIA CITOPLASMÁTICA

Además del núcleo, ciertos componentes de las células contienen ADN. Éstos incluyen los cuerpos citoplasmáticos denominados mitocondrias (los productores de energía de la célula), y los cloroplastos de las plantas, en los que tiene lugar la fotosíntesis. Estos cuerpos se autorreproducen. El ADN se replica de manera similar al del núcleo, y algunas veces su código se transcribe y se traduce en proteínas. En 1981 se determinó la secuencia completa de nucleótidos del ADN de una mitocondria. En apariencia, la mitocondria utiliza un código que difiere muy poco del utilizado por el núcleo.
Los caracteres determinados por el ADN citoplasmático se heredan con más frecuencia a través de la madre que del padre (exclusivamente a través de la madre en el caso del Homo sapiens), ya que los espermatozoides y el polen contienen por lo general menos material citoplasmático que el óvulo. Algunos casos de herencia materna aparente están, en realidad, relacionados con la transmisión de virus de la madre al hijo a través del citoplasma del óvulo.

HERENCIA CUANTITATIVA

Los caracteres que se expresan como variaciones en cantidad o extensión, como el peso, la talla o el grado de pigmentación, suelen depender de muchos genes, así como de las influencias del medio. Con frecuencia, los efectos de genes distintos parecen ser aditivos, es decir, parece que cada gen produce un pequeño incremento o descenso independiente de los otros genes. Por ejemplo, la altura de una planta puede estar determinada por una serie de cuatro genes: A, B, C y D. Supongamos que cuando su genotipo es aabbccdd, la planta alcanza una altura media de 25 cm, y que cada sustitución por un par de alelos dominantes aumenta la altura media en unos 10 centímetros. En el caso de una planta que es AABBccdd su altura será de 45 cm, y en aquella que es AABBCCDD será de 65 centímetros. En realidad, los resultados no suelen ser tan regulares. Genes diferentes pueden contribuir de forma distinta a la medida total, y ciertos genes pueden interactuar, de modo que la aportación de uno depende de la presencia de otro. La herencia de características cuantitativas que dependen de varios genes se denomina herencia poligénica. La combinación de influencias genéticas y del medio se conoce como herencia multifactorial.

________________________________________________________________

CARIOTIPO HUMANO: QUÉ ES Y CÓMO SE OBTIENE

Todos los seres humanos tienen 22 pares de cromosomas iguales, denominados autosomas, y un par de cromosomas diferentes según el sexo del individuo, los cromosomas sexuales o heterocromosomas.
Los cromosomas de cada especie poseen una serie de características, como la forma, el tamaño, la posición del centrómero y las bandas que presentan al teñirse. Este conjunto de particularidades, que permite identificar los cromosomas de las distintas especies, recibe el nombre de cariotipo, y su representación gráfica, ordenada por parejas de cromosomas
homólogos, se denomina cariograma.
A continuación se puede ver un cariograma:



Es recomendable realizar un cariotipo de un individuo en los casos que a continuación se exponen:
Para confirmar síndromes congénitos.
Cuando se observan algunas anomalías específicas o que pueden estar relacionadas con los heterocromosomas.
En situaciones de abortos repetidos, problemas de esterilidad...
Mediante el estudio del cariotipo es posible detectar anomalías en el número o en la forma de los cromosomas. La mayoría de estas anomalías provocan deficiencias, y muchos individuos no llegan a nacer o mueren en los primeros meses de vida. La determinación del cariotipo del feto permite detectar, antes del nacimiento, algunas de estas deficiencias.
Para determinar el cariotipo de un individuo, es necesario llevar a cabo un cultivo de células y, cuando estas comienzan a dividirse, teñirlas y hacer una preparación microscópica para fotografiar los cromosomas.
En un feto, las células se pueden obtener por amniocentesis, es decir, efectuando una punción en el vientre de la madre para obtener
líquido amniótico o bien por punción directa del cordón umbilical para extraer sangre del feto. En un individuo adulto se utilizan los glóbulos blancos de la sangre.
El último paso para determinar el cariotipo es ordenar y emparejar los cromosomas, y verificar si es correcto.

______________________________________________________________

HERENCIA LIGADA AL SEXO

Hay algunos caracteres que están determinados por genes que se encuentran en los cromosomas sexuales y, por tanto, se heredan a la vez que el sexo. El tipo de herencia de estos caracteres se denomina herencia ligada al sexo.
Algunas enfermedades que padece la especie humana se deben a la presencia de algún gen defectuoso en algún cromosoma. Si el gen defectuoso se localiza en un cromosoma sexual, las enfermedades a que de lugar se heredan ligadas el sexo.
El hombre solo tiene un cromosoma X. Por ello, todos los genes situados en él se manifestarán, sean dominantes o recesivos. En cambio, en la mujer, un gen recesivo no se manifestará si en el otro cromosoma X se encuentra su alelo dominante. En ese caso se dice que la mujer es portadora, y la probabilidad de que sus hijos varones exhiban dicho carácter es del 50%.
Por ejemplo, el daltonismo, un tipo de distrofia muscular y la hemofilia son enfermedades determinadas por genes en el cromosoma X y, por tanto, se heredan ligadas al sexo.
Ambas anomalías se producen por sendos genes recesivos localizados en el cromosoma X.

ANOMALÍAS DEBIDAS A ALTERACIONES EN
LOS GENES DEL CROMOSOMA X

A continuación se exponen las principales enfermedades ligadas al sexo:
Hemofilia: Las personas que padecen esta enfermedad presentan grandes hemorragias ante cualquier tipo de herida, pues a su sangre le falta una proteína que interviene en la coagulación.
Daltonismo: Es un defecto visual que impide ver el color rojo. Al igual que la hemofilia, es causado por un alelo recesivo.


ALTERACIONES DEBIDAS AL NÚMERO
DE CROMOSOMAS SEXUALES

Algunas alteraciones se producen al variar el número de cromosomas sexuales, bien sea el cromosoma X o el cromosoma Y. A continuación se explican brevemente algunas de las más conocidas:
Síndrome de Turner. Se produce cuando una mujer tiene solo un cromosoma sexual X en lugar del par sexual XX; es decir, tienen en total 45 cromosomas y no los 46 habituales.
Esta anomalía genética provoca las siguientes alteraciones: la mujer no madura sexualmente, los ovarios están poco desarrollados, no presenta mamas o estas son pequeñas, la piel del cuello muestra pliegues y puede manifestarse trastornos mentales de carácter leve. La frecuencia de aparición de esta anomalía es de una mujer por cada 3500 nacidas.
Síndrome de Klinefelter. Afecta a un hombre de cada 700. Los individuos con este síndrome tienen 47 cromosomas con dos X y un Y (XXY).
Poseen testículos poco desarrollados, pero son totalmente estériles: pueden tener erecciones y eyaculaciones, aunque sin espermatozoides. A menudo son altos y delgados y con voz muy aguda, y pueden presentar mamas desarrolladas.
Síndrome de la triple X (XXX). Afecta a una de cada 1000 mujeres, que presentan aspecto infantil y caracteres secundarios poco desarrollados.
Síndrome duplo Y. Afecta a 1 de cada 2000 hombres. Los individuos en los que se manifiesta este síndrome portan un cromosoma Y extra (XYY), son de estatura muy alta con un coeficiente intelectual bajo y pueden mostrarse agresivos y desarrollar un comportamiento antisocial.

_____________________________________________________________--
EL GENOMA HUMANO

En febrero de 2001, todos los medios de comunicación anunciaron que ya se disponía del primer borrador del genoma humano, gracias a los esfuerzos de un proyecto público y de otro privado. Pero ¿qué es el genoma humano?
Los cromosomas están constituidos por
ADN y proteínas, con una estructura de bases que se van repitiendo y alternando hasta llegar, en la especie humana, a un número aproximado de 3.000 millones.
El genoma humano es la secuencia completa del ADN, es decir, la lista de los 3.000 millones de nucleótidos que se encuentran dentro de cada una de nuestras células.
La función del ADN es aportar información para que la célula fabrique proteínas. Cada fragmento de ADN que codifica una proteína es un gen.
Aunque ya se ha secuenciado totalmente el genoma de otros organismos, como bacterias, levaduras, insectos, gusanos o el arroz, el Proyecto Genoma Humano ha supuesto un gran avance, pues nuestro genoma es 25 veces más grande que el de cualquier otro organismo ya conocido.
Como datos sorprendentes desvelados por este primer borrador cabe destacar que el número de genes humaos se cifra en unos 31.000, muy inferior al que se calculaba, y que los genes encargados de fabricar proteínas suponen realmente el 1,5 % de todo el ADN. Se ha comprobado también que las diferencias del genoma entre las personas es del 0,1 %, lo que significa que el 99,9 % restante es idéntico.
El conocimiento del genoma humano plantea, sin embargo, un gran número de incógnitas, como, por ejemplo, cuál es la función de esos 31.000 genes, cómo construyen y mantienen nuestro organismo, de qué forma causan las enfermedades, etc. Este es el momento de entender cómo funciona cada uno de nuestros genes, qué proteína se sintetiza con su información y cuál es la función de esta proteína.



martes, 25 de noviembre de 2008

A D N



Pruebas de ADN, utilización de restos orgánicos para identificar el ácido desoxirribonucleico (ADN) de una persona. Se ha realizado un buen número de pruebas científicas que prueban que el ADN es la base de la herencia, entre las que se pueden destacar: a) en el proceso normal de reproducción celular, los cromosomas (estructuras con ADN) se duplican para proporcionar a los núcleos hijos los mismos genes que la célula madre; b) las mutaciones provocadas se producen por una alteración de la estructura del ADN que tienen como efecto una grave alteración de la descendencia de las células afectadas; c) el ADN extraído de un virus basta por sí mismo para reproducir el virus entero, por lo que parece claro que, en la esfera jurídica y a efectos legales, tiene toda la información genética para ello. Por todo ello, el ADN puede llegar a ser muy útil en Derecho, no sólo para identificar a una persona gracias a los restos orgánicos encontrados donde se haya cometido un crimen (en especial en delitos contra la libertad sexual o en los que se ha ejercido violencia), sino también para determinar la filiación biológica de una persona.
Ácido desoxirribonucleico (ADN), material genético de todos los organismos celulares y casi todos los virus. El ADN lleva la información necesaria para dirigir la síntesis de proteínas y la replicación. Se llama síntesis de proteínas a la producción de las proteínas que necesita la célula o el virus para realizar sus actividades y desarrollarse. La replicación es el conjunto de reacciones por medio de las cuales el ADN se copia a sí mismo cada vez que una célula o un virus se reproduce y transmite a la descendencia la información que contiene. En casi todos los organismos celulares el ADN está organizado en forma de cromosomas, situados en el núcleo de la célula.




ESTRUCTURA
Cada molécula de ADN está constituida por dos cadenas o bandas formadas por un elevado número de compuestos químicos llamados nucleótidos. Estas cadenas forman una especie de escalera retorcida que se llama doble hélice. Cada nucleótido está formado por tres unidades: una molécula de azúcar llamada desoxirribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina (abreviada como A), guanina (G), timina (T) y citosina (C). La molécula de desoxirribosa ocupa el centro del nucleótido y está flanqueada por un grupo fosfato a un lado y una base al otro. El grupo fosfato está a su vez unido a la desoxirribosa del nucleótido adyacente de la cadena. Estas subunidades enlazadas desoxirribosa-fosfato forman los lados de la escalera; las bases están enfrentadas por parejas, mirando hacia el interior, y forman los travesaños.
Los nucleótidos de cada una de las dos cadenas que forman el ADN establecen una asociación específica con los correspondientes de la otra cadena. Debido a la afinidad química entre las bases, los nucleótidos que contienen adenina se acoplan siempre con los que contienen timina, y los que contienen citosina con los que contienen guanina. Las bases complementarias se unen entre sí por enlaces químicos débiles llamados enlaces de hidrógeno.
En 1953, el bioquímico estadounidense James Watson y el biofísico británico Francis Crick publicaron la primera descripción de la estructura del ADN. Su modelo adquirió tal importancia para comprender la síntesis proteica, la replicación del ADN y las mutaciones, que los científicos obtuvieron en 1962 el Premio Nobel de Medicina por su trabajo.



SÍNTESIS PROTEICA

El ADN incorpora las instrucciones de producción de proteínas. Una proteína es un compuesto formado por moléculas pequeñas llamadas aminoácidos, que determinan su estructura y función. La secuencia de aminoácidos está a su vez determinada por la secuencia de bases de los nucleótidos del ADN. Cada secuencia de tres bases, llamada triplete, constituye una palabra del código genético o codón, que especifica un aminoácido determinado. Así, el triplete GAC (guanina, adenina, citosina) es el codón correspondiente al aminoácido leucina, mientras que el CAG (citosina, adenina, guanina) corresponde al aminoácido valina. Por tanto, una proteína formada por 100 aminoácidos queda codificada por un segmento de 300 nucleótidos de ADN. De las dos cadenas de polinucleótidos que forman una molécula de ADN, sólo una, llamada paralela, contiene la información necesaria para la producción de una secuencia de aminoácidos determinada. La otra, llamada antiparalela, ayuda a la replicación.
La síntesis proteica comienza con la separación de la molécula de ADN en sus dos hebras. En un proceso llamado transcripción, una parte de la hebra paralela actúa como plantilla para formar una nueva cadena que se llama ARN mensajero o ARNm (véase Ácido ribonucleico). El ARNm sale del núcleo celular y se acopla a los ribosomas, unas estructuras celulares especializadas que actúan como centro de síntesis de proteínas. Los aminoácidos son transportados hasta los ribosomas por otro tipo de ARN llamado de transferencia (ARNt). Se inicia un fenómeno llamado traducción que consiste en el enlace de los aminoácidos en una secuencia determinada por el ARNm para formar una molécula de proteína.
Un gen es una secuencia de nucleótidos de ADN que especifica el orden de aminoácidos de una proteína por medio de una molécula intermediaria de ARNm. La sustitución de un nucleótido de ADN por otro que contiene una base distinta hace que todas las células o virus descendientes contengan esa misma secuencia de bases alterada. Como resultado de la sustitución, también puede cambiar la secuencia de aminoácidos de la proteína resultante. Esta alteración de una molécula de ADN se llama mutación. Casi todas las mutaciones son resultado de errores durante el proceso de replicación. La exposición de una célula o un virus a las radiaciones o a determinados compuestos químicos aumenta la probabilidad de sufrir mutaciones.







REPLICACIÓN
En casi todos los organismos celulares, la replicación de las moléculas de ADN tiene lugar en el núcleo, justo antes de la división celular. Empieza con la separación de las dos cadenas de polinucleótidos, cada una de las cuales actúa a continuación como plantilla para el montaje de una nueva cadena complementaria. A medida que la cadena original se abre, cada uno de los nucleótidos de las dos cadenas resultantes atrae a otro nucleótido complementario previamente formado por la célula. Los nucleótidos se unen entre sí mediante enlaces de hidrógeno para formar los travesaños de una nueva molécula de ADN. A medida que los nucleótidos complementarios van encajando en su lugar, una enzima llamada ADN polimerasa los une enlazando el grupo fosfato de uno con la molécula de azúcar del siguiente, para así construir la hebra lateral de la nueva molécula de ADN. Este proceso continúa hasta que se ha formado una nueva cadena de polinucleótidos a lo largo de la antigua; se reconstruye así un nueva molécula con estructura de doble hélice.



HERRAMIENTAS Y TÉCNICAS PARA EL ESTUDIO DEL ADN


Existen numerosas técnicas y procedimientos que emplean los científicos para estudiar el ADN. Una de estas herramientas utiliza un grupo de enzimas especializadas, denominadas enzimas de restricción, que fueron encontradas en bacterias y que se usan como tijeras moleculares para cortar los enlaces fosfato de la molécula de ADN en secuencias específicas. Las cadenas de ADN que han sido cortadas con estas enzimas presentan extremos de cadena sencilla, que pueden unirse a otros fragmentos de ADN que presentan extremos del mismo tipo. Los científicos utilizan este tipo de enzimas para llevar a cabo la tecnología del ADN recombinante o ingeniería genética. Esto implica la eliminación de genes específicos de un organismo y su sustitución por genes de otro organismo.
Otra herramienta muy útil para trabajar con ADN es un procedimiento llamado reacción en cadena de la polimerasa (RCP), también conocida como PCR por su traducción directa del inglés (polymerase chain reaction). Esta técnica utiliza una enzima denominada ADN polimerasa que copia cadenas de ADN en un proceso que simula la forma en la que el ADN se replica de modo natural en la célula. Este proceso, que ha revolucionado todos los campos de la biología, permite a los científicos obtener gran número de copias a partir de un segmento determinado de ADN.
La tecnología denominada huella de ADN (DNA fingerprinting) permite comparar muestras de ADN de diversos orígenes, de manera análoga a la comparación de huellas dactilares. En esta técnica los investigadores utilizan también las enzimas de restricción para romper una molécula de ADN en pequeños fragmentos que separan en un gel al que someten a una corriente eléctrica (electroforesis); de esta manera, los fragmentos se ordenan en función de su tamaño, ya que los más pequeños migran más rápidamente que los de mayor tamaño. Se puede obtener así un patrón de bandas o huella característica de cada organismo. Se utiliza una sonda (fragmento de ADN marcado) que hibride (se una específicamente) con algunos de los fragmentos obtenidos y, tras una exposición a una película de rayos X, se obtiene una huella de ADN, es decir, un patrón de bandas negras característico para cada tipo de ADN.
Un procedimiento denominado secuenciación de ADN permite determinar el orden preciso de bases nucleótidas (secuencia) de un fragmento de ADN. La mayoría de los tipos de secuenciación de ADN se basan en una técnica denominada extensión de oligonucleótido (primer extension) desarrollada por el biólogo molecular británico Frederick Sanger. En esta técnica se lleva a cabo una replicación de fragmentos específicos de ADN, de tal modo que el extremo del fragmento presenta una forma fluorescente de una de las cuatro bases nucleótidas. Los modernos secuenciadores de ADN parten de la idea del biólogo molecular estadounidense Leroy Hood, incorporando ordenadores y láser en el proceso.
Los científicos ya han completado la secuenciación del material genético de varios microorganismos incluyendo la bacteria Escherichia coli. En 1998 se llevó a cabo el reto de la secuenciación del genoma de un organismo pluricelular, un gusano nematodo conocido como Caenorhabditis elegans. En el año 2000 se descifró el material genético de la mosca del vinagre (Drosophila melanogaster) y de la planta Arabidopsis thaliana, entre otros organismos. Pero el acontecimiento más importante, dentro de este grupo de investigaciones, fue el desciframiento del genoma humano llevado a cabo en febrero de 2001, de manera independiente, por el consorcio público internacional Proyecto Genoma Humano y la empresa privada Celera Genomics.



APLICACIONES


La investigación sobre el ADN tiene un impacto significativo, especialmente en el ámbito de la medicina. A través de la tecnología del ADN recombinante los científicos pueden modificar microorganismos que llegan a convertir en auténticas fábricas para producir grandes cantidades de sustancias útiles. Por ejemplo, esta técnica se ha empleado para producir insulina (necesaria para los enfermos de diabetes) o interferón (muy útil en el tratamiento del cáncer). Los estudios sobre el ADN humano también revelan la existencia de genes asociados con enfermedades específicas como la fibrosis quística y determinados tipos de cáncer. Esta información puede ser valiosa para el diagnóstico preventivo de varios tipos de enfermedades.
La medicina forense utiliza técnicas desarrolladas en el curso de la investigación sobre el ADN para identificar delincuentes. Las muestras de ADN tomadas de semen, piel o sangre en el escenario del crimen se comparan con el ADN del sospechoso; el resultado es una prueba que puede utilizarse ante los tribunales. Véase Pruebas de ADN.
El estudio del ADN también ayuda a los taxónomos a establecer las relaciones evolutivas entre animales, plantas y otras formas de vida, ya que las especies más cercanas filogenéticamente presentan moléculas de ADN más semejantes entre sí que cuando se comparan con especies más distantes evolutivamente. Por ejemplo, los buitres americanos están más emparentados con las cigüeñas que con los buitres europeos, asiáticos o africanos, a pesar de que morfológicamente y etológicamente son más similares a estos últimos.
La agricultura y la ganadería se valen ahora de técnicas de manipulación de ADN conocidas como ingeniería genética y biotecnología. Las estirpes de plantas cultivadas a las que se han transferido genes pueden rendir cosechas mayores o ser más resistentes a los insectos. También los animales se han sometido a intervenciones de este tipo para obtener razas con mayor producción de leche o de carne o razas de cerdo más ricas en carne y con menos grasa.


A C I D O R I B O N U C L E I C O (A R N)


Material genético de ciertos virus (virus ARN) y, en los organismos celulares, molécula que dirige las etapas intermedias de la síntesis proteica. En los virus ARN, esta molécula dirige dos procesos: la síntesis de proteínas (producción de las proteínas que forman la cápsula del virus) y replicación (proceso mediante el cual el ARN forma una copia de sí mismo). En los organismos celulares es otro tipo de material genético, llamado ácido desoxirribonucleico (ADN), el que lleva la información que determina la estructura de las proteínas. Pero el ADN no puede actuar solo, y se vale del ARN para transferir esta información vital durante la síntesis de proteínas (producción de las proteínas que necesita la célula para sus actividades y su desarrollo).
Como el ADN, el ARN está formado por una cadena de compuestos químicos llamados nucleótidos. Cada uno está formado por una molécula de un azúcar llamado ribosa, un grupo fosfato y uno de cuatro posibles compuestos nitrogenados llamados bases: adenina, guanina, uracilo y citosina. Estos compuestos se unen igual que en el ácido desoxirribonucleico (ADN). El ARN se diferencia químicamente del ADN por dos cosas: la molécula de azúcar del ARN contiene un átomo de oxígeno que falta en el ADN; y el ARN contiene la base uracilo en lugar de la timina del ADN.



A R N C E L U L A R
En organismos celulares, el ARN es una cadena de polinucleótidos de una sola hebra, es decir, una serie de nucleótidos enlazados. Hay tres tipos de ARN: el ARN ribosómico (ARNr) se encuentra en los ribosomas celulares (estructuras especializadas situadas en los puntos de síntesis de proteínas); el ARN de transferencia (ARNt) lleva aminoácidos a los ribosomas para incorporarlos a las proteínas; el ARN mensajero (ARNm) lleva una copia del código genético obtenida a partir de la secuencia de bases del ADN celular. Esta copia especifica la secuencia de aminoácidos de las proteínas. Los tres tipos de ARN se forman a medida que son necesarios, utilizando como plantilla secciones determinadas del ADN celular.



A R N V Í R I C O


Algunos virus tienen ARN de cadena doble, formado por dos cadenas de polinucleótidos complementarios. En estos virus, la replicación del ARN en la célula hospedante sigue la misma pauta que la replicación del ADN. Cada nueva molécula de ARN tiene una cadena de polinucleótidos procedente de otra anterior. Cada una de las bases de los nucleótidos de la cadena se acopla con una base complementaria de otro nucleótido de ARN: adenina con uracilo y guanina con citosina. Hay dos tipos de virus con ARN de cadena única. Uno de ellos, el poliovirus, virus causante de la poliomielitis humana (véase Enterovirus), penetra en la célula hospedante y sintetiza una cadena de ARN complementaria para transformar la molécula sencilla en doble. Durante la replicación las dos hebras se separan, pero sólo la formada recientemente atrae nucleótidos con bases complementarias. Por tanto, la cadena de polinucleótidos formada como resultado de la replicación es exactamente igual a la original.
El otro tipo, que agrupa los llamados retrovirus, comprende el virus de la inmunodeficiencia humana (VIH), que causa el SIDA, y otros virus causantes de tumores. Después de entrar en la célula hospedante, el retrovirus forma una cadena de ADN complementaria de su propio ARN valiéndose de los nucleótidos de la célula. Esta nueva cadena de ADN se replica y forma una doble hélice que se incorpora a los cromosomas de la célula hospedante, donde a su vez se replica junto con el ADN celular. Mientras se encuentra en la célula hospedante, el ADN vírico sintetizado a partir del ARN produce virus ARN de cadena única que abandonan la célula e invaden otras.